HEE:
HOHAI UNIVERSITY

Dual Adaptive Compression for Efficient Communication
in Heterogeneous Federated Learning

Yingchi Mao<+?, Zibo Wang?’, Chenxin Li?, Jiakai Zhang?, Shufang Xu<+?, and Jie Wu¢

«Key Laboratory of Water Big Data Technology of Ministry of Water Resources,
Hohai University, Nanjing, China
b School of Computer and Information, Hohai University, Nanjing, China

¢ Center for Networked Computing, Temple University, Philadelphia, USA

IEEE/ACM CCGRID
The 24th IEEE/ACM international Symposium on Cluster, Cloud and Internet Computing
May. 6-9, 2024



Content

Introduction

Related Work

Approach

Experiment

Conclusion |




" Introduction

B Background

In federated learning, the model updates transmitted between clients and the
server lead to significant communication costs, especially when it involves large-
scale models.
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" Introduction

® During the upstream communication of federated learning, clients upload their local
model updates to the server, and then the server update the global model.

) aggregation
— b
= (Wi, W2, .. Wh ) ee—)- \\

[ .

3 |

! Upstream Wi Wo Wa : A
1 | Communication

Upload local
model updates

mDo%




" Introduction

® During the downstream communication, the server distributes the global model
updates to initialize the global model on each client.
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" Introduction

® \We can compress the model updates transmitted between clients and the server to
reduce the single round communication volume, there by reducing the
communication costs in federated learning.
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" Introduction

® As typical model compression techniques, quantization and sparsification are
commonly utilized in distributed machine learning for efficient communication.

“ om s mm s mm s mm o omm s
-
 am s mm s mmos mmo o mm s

Quantization
0.68 1.43 81 9

Quantization Sparsification

|
I 112 27 09 - 7% 119 2
i
i
\

® However, quantization and sparsification cannot be directly employed in
federated learning.



" Introduction
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® Lossy compression in quantization or sparsification leads to a decline in
model accuracy, it is challenging to strike a balance between communication
efficiency and model accuracy.

® In heterogeneous federated learning, employing the same and fixed
compression coefficients for all clients with different data distributions will
exacerbate gradient conflict and gradient drift.



" Related Work

B One-way Adaptive compression methods

® In order to deploy suitable compression methods for heterogeneous
federated learning, adaptive compression is introduced by related studies.
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" Related Work

B One-way Adaptive compression methods
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® AdaQuantFL: It utilizes the initial and current local ® FAB-top-k: It predicts the fluctuation

loss to adjust the quantization coefficient, mitigating of the loss function to adjust the
the problem of high error floor due to quantization, sparsity ratio,
[D. Jhunjhunwala et al. ICASSP’2021] [P. Han et al. ICDCS’2020]

These methods only reduce the upstream communication volume, and the

communication efficiency needs to be further optimized.



" Related Work

B Two-way compression methods

® To achieve this, various mechanisms are introduced in the relevant
researches, thereby simultaneously compressing model updates
transmitted between upstream and downstream.
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" Related Work

B Two-way compression methods
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® STC: Combined with sparsification and ternary @ T-FedAvg: It quantizes the local updates and
quantization, STC can extremely reduce the sparsifies global updates during training,
communication costs in federated learning, achieving Dbidirectional compression for
[F. Sattler et al. IEEE NNLS2020] upstream and downstream communication,

[J. Xu et al. IEEE NNLS2022]

These methods adopt a fixed compression ratio, which cannot be directly

employed in heterogeneous federated learning.



Approach
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Approach
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" Approach
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® On the server side, the Dynamic Global
Updates Sparsification module is employed to
compress the global model updates.
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" Approach

® In order to mitigate the degradation of global
model accuracy caused by lossy compression,
we introduce the Local and Global Residual
Updates on both the client and the server side.
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" Approach

Adaptive Local Updates Quantization

® In the local computation phase, a loss queue of capacity y is defined on
each client, which is utilized to store the local loss of each client.

® \With the introduction of the loss queue, the convergence trends within each
client can be determined.
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" Approach

Adaptive Local Updates Quantization
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" Approach

Adaptive Local Updates Quantization
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" Approach

Adaptive Local Updates Quantization
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® The client m will quantize its
local model updates based on
the quantization coefficient.
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" Approach

Dynamic Global Updates Sparsification

® In the initial stage of training, the data distribution among heterogeneous
clients leads to a large difference between local and global updates. A
smaller compression ratio should be employed to maintain the integrity of the
model updates, thereby improving the training effect in the initial stage.
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" Approach

Dynamic Global Updates Sparsification

® \When the global model tends to converge, the difference between local
and global updates becomes smaller. The compression ratio can be scaled
up to further optimize the communication efficiency.
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" Approach

Dynamic Global Updates Sparsification
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® |n the global aggregation phase, FedDAC
will calculate the average of similarity.

® The number of parameters with the same
update direction between local updates
and global wupdates is utilized for
similarity calculation.
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" Approach

Dynamic Global Updates Sparsification
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" Approach

Local and Global Residual Updates

® To alleviate the impairment of global model accuracy caused by quantization
and sparsification, we introduce the residual updates on both local computation
and global aggregation phases.
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" Approach

Local and Global Residual Updates

® The residual refers to the difference between the full precision model and the
lossy compressed model. The local residual is introduced into the local updates
and the global updates is composed of its original values and the global residual.
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B Experiment Setup

® \We conduct experiments to evaluate the performance of FedDAC.
® Specifically, we choose the MNIST and CIFAR-10 as experiment datasets.

® \We employ the Dirichlet distribution simulate the data heterogeneity.

o L

MNIST
CIFAR-10




" Experiment

B Experiment Setup

® The parameter settings are shown in the table.

Parameter Value
The 1teration rounds: R 200
The local learning rate: 7, 0.1/0.01
The number of clients: M 100
Clients selected for in each round 10
The initial quantization coefficient: q, 64/128
The 1nitial sparsity ratio s, 0.2/0.1

® And the indicators include the accumulated communication volume

and the global model accuracy.



B Analysis of the hyperparameter selection

® To choose suitable hyperparameter u for the subsequent experiments,
we analysis the hyperparameter under different situations. The

experiments results are shown below.

TABLE 111 TABLE IV
ACCUMULATED COMMUNICATION VOLUME (MB) WITH pu GLOBAL MODEL ACCURACY (%) WITH pn
Dataset Dataset
7 MNIST CIFAR-10 7 MNIST CIFAR-10
a=10.5 a=1 a=10 a=10.5 a=1 a=10 a=0.5 a=1 a=10 a=10.5 a=1 a=10

10 12.0 11.3 14 215.0 163.8 153.6 10 86.84 90.09 90.37 52.86 60.19 63.33
20 10.8 8.9 1.5 225.3 184.3 163.8 20 86.87 90.10 90.36 52.90 60.22 63.30
30 16.9 16.1 3.2 245.8 225.3 204.8 30 86.86 90.12 90.35 52.84 60.21 63.28
40 32.3 29.0 5.7 358.4 3174 256.0 40 86.86 90.13 90.38 52.87 60.23 63.32
50 63.2 59.6 11.9 409.6 389.1 378.9 50 86.88 90.15 90.41 52.91 60.26 63.31




different u. We can see when u equals to 10,
accumulated communication volume under all situations. As u getting
larger, the accumulated communication volume increases significantly.

TABLE III
ACCUMULATED COMMUNICATION VOLUME (MB) WITH p

B Analysis of the hyperparameter selection

TABLE IV

® The left table shows the accumulated communication volume with
it has the smallest

GLOBAL MODEL ACCURACY (%) WITH u

Dataset Dataset

7 MNIST CIFAR-10 7 MNIST CIFAR-10

a=10.5 a=1 a=10 a=10.5 a=1 a=10 a=0.5 a=1 a=10 a=10.5 a=1 a=10
10 12.0 11.3 14 215.0 163.8 153.6 10 86.84 90.09 90.37 52.86 60.19 63.33
20 10.8 3.9 1.5 225.3 184.3 163.8 20 86.87 90.10 90.36 52.90 60.22 63.30
30 16.9 16.1 3.2 245.8 225.3 204.8 30 86.86 90.12 90.35 52.84 60.21 63.28
40 32.3 29.0 5.7 358.4 3174 256.0 40 86.86 90.13 90.38 52.87 60.23 63.32

150 63.2 59.6 11.9 409.6 389.1 378.9 50 86.88 90.15 90.41 52.91 60.26 63.31




B Analysis of the hyperparameter selection

® The right table shows the global model accuracy with different 4. Under

week data heterogeneous situation that is a equals to 10, it has the
highest global model accuracy when u equals 10.

TABLE III
ACCUMULATED COMMUNICATION VOLUME (MB) WITH p

TABLE IV

GLOBAL MODEL ACCURACY (%) WITH u

Dataset

7 MNIST CIFAR-10

a=10.5 a=1 a=10 a=10.5 a=1 a=10
10 12.0 11.3 14 215.0 163.8 153.6
20 10.8 8.9 1.5 225.3 184.3 163.8
30 16.9 16.1 3.2 245.8 225.3 204.8
40 32.3 29.0 5.7 358.4 3174 256.0
50 63.2 59.6 11.9 409.6 389.1 378.9

Dataset

7 MNIST CIFAR-10

a=0.5 a=1 a=10 a=10.5 a=1 a=10
10 86.84 90.09 90.37 52.86 60.19 63.33
20 86.87 90.10 90.36 52.90 60.22 63.30
30 86.86 90.12 90.35 52.84 60.21 63.28
40 86.86 90.13 90.38 52.87 60.23 63.32
50 86.88 90.15 90.41 52.91 60.26 63.31




B Analysis of the hyperparameter selection

® Based on the above analysis, we set u to 10, Therefore, the highest
communication efficiency can be obtained with a slight decrease in

global model accuracy.

TABLE III
ACCUMULATED COMMUNICATION VOLUME (MB) WITH p

TABLE IV

GLOBAL MODEL ACCURACY (%) WITH u

Dataset Dataset

7 MNIST CIFAR-10 7 MNIST CIFAR-10

a=10.5 a=1 a=10 a=10.5 a=1 a=10 a=0.5 a=1 a=10 a=10.5 a=1 a=10
10 12.0 11.3 1.4 215.0 163.8 153.6 10 86.84 90.09 90.37 52.86 60.19 63.33
20 10.8 8.9 1.5 225.3 184.3 163.8 20 86.87 90.10 90.36 52.90 60.22 63.30
30 16.9 16.1 3.2 245.8 225.3 204.8 30 86.86 90.12 90.35 52.84 60.21 63.28
40 32.3 29.0 5.7 358.4 3174 256.0 40 86.86 90.13 90.38 52.87 60.23 63.32
50 63.2 59.6 11.9 409.6 389.1 378.9 50 86.88 90.15 90.41 52.91 60.26 63.31




" Experiment

B Analysis of the accumulated communication volume

® After the hyperparameter selection, we compare FedDAC with NAGC.
AdaQuantFL, which are one-way compression methods considering variable
compression ratios and T-FedAvg, which is a two-way compression method
with a fixed compression coefficient.

NAGC 1
One-way compression method
with variable compression ratios p .
AdaQuantFL
[ FedDAC X Qu )
. (

Two-way compression method ) ) TFedAv

with fixed compression ratios J L 5 )
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® This figure shows the accumulated communication volume on MNIST of the four methods.

® Ve can see that FedDAC can achieve the smallest accumulated communication volume.
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Fig. 5. Accumulated communication volume on the heterogeneous MNIST dataset for NAGC, AdaQuantFL, T-FedAvg, and FedDAC




accumulated communication volume.
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B Analysis of the accumulated communication volume

® The next figure shows the accumulated communication volume on CIFAR-10 of the four
methods. Same as the results on MNIST, our method can still achieve the smallest
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6. Accumulated communication volume on the heterogeneous CIFAR-10 dataset for NAGC, AdaQuantFL, T-FedAvg, and FedDAC




B Analysis of the global model accuracy

® \We also compare the global model accuracy of FedDAC with other three methods.

® The results are shown in this table.

TABLE V
GLOBAL MODEL ACCURACY OF DIFFERENT APPROACHES

C . Dataset
OmpArson MNIST CIFAR-10
approaches
a=05 a=1 o=10]| =05 o=1 =10
NAGC 84.20 87.78 88.82 49 41 57.39 61.25
AdaQuantFL 86.34 89.42 91.55 53.02 6147 62.32
T-FedAvg 84.29 88.17 89.37 46.76 5429  60.88
FedDAC 86.84 90.09 90.37 51.86  60.19 63.33




B Analysis of the global model accuracy

® On the MNIST dataset, FedDAC outperforms the other three methods under

strong data heterogeneity situation, that is a equals to 0.5 or 1.

TABLE V
GLOBAL MODEL ACCURACY OF DIFFERENT APPROACHES

. Dataset
ggg‘r‘(’;‘;‘f‘g? MNIST CIFAR-10
a=05 aoa=1 o=10| =05 o=1 o=10
NAGC 8420 87.78  88.82 4941 5739 61.25
AdaQuantFL | 86.34 8942 91.55 | 53.02 6147 62.32
T-FedAvg 84.29  88.17 89.37 4676 5429  60.88
FedDAC 86.84  90.09 | 90.37 51.86  60.19 63.33




B Analysis of the global model accuracy

® On the CIFAR-10 dataset, under week data heterogeneity situation, that is a
equals to 10, FedDAC outperforms the other three methods.

TABLE V
GLOBAL MODEL ACCURACY OF DIFFERENT APPROACHES
Comparison Dataset
i
approaches MNIST CIFAR-10
a=05 aoa=1 aoa=10| =05 oa=1 o=10
NAGC 8420 87.78  88.82 4941 5739 61.25
AdaQuantFL | 86.34 89.42  91.55 53.02 6147 62.32
T-FedAvg 84.29  88.17 89.37 46.76 5429  60.88
FedDAC 86.84 90.09 90.37 51.86 60.19 | 63.33 |




Conclusion

Conclusion

® In order to reduce the significant communication costs in heterogeneous federated learning
while achieving the trade-off between communication efficiency and global model accuracy, a
Dual Adaptive Compression method (FedDAC) is proposed in this paper.

» In the local computation phase, the loss queue is adopted to detect the convergence trends
within each client. FedDAC can then dynamically quantify model updates and allow for various
compression ratios among heterogeneous clients.

» In the global aggregation phase, FedDAC can determine the fluctuations in training based on the
similarity between clients and the server, thereby adjusting the sparsity ratio flexibly.

» To alleviate the reduction in model accuracy caused by lossy compression, we introduce residual
updates in the local computation and global aggregation phases to maintain model accuracy.

Future Work

® Experiments on large-scale datasets

® Further improve the accuracy



Thanks for your attention!



